Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Ophthalmol ; 2023: 7893104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895267

RESUMO

Purpose: Recent evidence has shown that retinal inflammation is a key player in diabetic retinopathy (DR) pathogenesis. To further understand and validate the metabolic biomarkers of DR, we investigated the effect of intravitreal proinflammatory cytokines on the retinal structure, function, and metabolism in an in vivo hyperglycemic mouse model. Methods: C57Bl/6 mice were rendered hyperglycemic within one week of administration of a single high-dose intraperitoneal injection of streptozotocin, while control mice received vehicle injection. After confirming hyperglycemia, the mice received an intravitreal injection of either proinflammatory cytokines (TNF-α and IL-1ß) or vehicle. Similarly, control mice received an intravitreal injection of either proinflammatory cytokines or vehicle. The retinal structure was evaluated using fundus imaging and optical coherence tomography, and retinal function was assessed using a focal electroretinogram (ERG), two days after cytokine injection. Retinas were collected for biochemical analysis to determine key metabolite levels and enzymatic activities. Results: Hyperglycemic mice intraocularly injected with cytokines developed visible retinal vascular damage and intravitreal and intraretinal hyper-reflective spots two days after the cytokines injection. These mice also developed a significant functional deficit with reduced a-wave and b-wave amplitudes of the ERG at high light intensities compared to control mice. Furthermore, metabolic disruption was evident in these mice, with significantly higher retinal glucose, lactate, ATP, and glutamine levels and a significant reduction in glutamate levels compared with control mice. Minimal or no metabolic changes were observed in hyperglycemic mice without intraocular cytokines or in control mice with intraocular cytokines at 2 days post hyperglycemia. Conclusions: Proinflammatory cytokines accelerated the development of vascular damage in the eyes of hyperglycemic mice. Significant changes were observed in retinal structure, function, and metabolic homeostasis. These findings support the idea that with the onset of inflammation in DR, there is a deficit in metabolism. Therefore, early intervention to prevent inflammation-induced retinal changes in diabetic patients may improve the disease outcome.

2.
Exp Eye Res ; 227: 109364, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586548

RESUMO

To determine the role of the cystine/glutamate antiporter on retinal structure and function, retinas of C57Bl/6J wild-type and xCT knockout mice, lacking the xCT subunit of the cystine/glutamate antiporter were examined from 6 weeks to 12 months of age. Fundoscopy, optical coherence tomography (OCT), and whole mount retinal autofluorescence imaging were used to visualise age-related retinal spots. Glial fibrillary acidic protein (GFAP) immunolabelling was used to assess retinal stress. Retinal function was evaluated using full-field and focal electroretinograms. Examinations revealed retinal spots in both wild-type and xCT knockout mice with the number of spots greater at 9 months in the knockout compared to wild-type. OCT confirmed these discrete spots were located at the retinal pigment epithelium (RPE)-photoreceptor junction and did not label with drusen markers. Whole mount lambda scans of the 9 month xCT knockout retinas revealed that the photoreceptor autofluorescence matched the spots, suggesting these spots were retinal debris. GFAP labelling was increased in knockout retinas compared to wild-type indicative of retinal stress, and the discrete spots were associated with migration of microglia/macrophages to the RPE-retina intersection. OCT revealed that the superior retina was thinner at 9 months in knockout compared to wild-type mice due to changes to the outer nuclear and photoreceptor layers. While global retinal function was not affected by loss of xCT, focal changes in retinal function were detected in areas where spots were present. Tother these results suggest that the xCT KO mice exhibit features of accelerated ageing and suggests that this mouse model may be useful for studying the underlying cellular pathways in retinal ageing.


Assuntos
Cistina , Ácido Glutâmico , Camundongos , Animais , Cistina/metabolismo , Camundongos Knockout , Ácido Glutâmico/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Camundongos Endogâmicos C57BL
3.
Prog Retin Eye Res ; 95: 101152, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36470825

RESUMO

The lens is an important determinant of overall vision quality whose refractive and transparent properties change throughout life. Alterations to the refractive properties of the lens contribute to the process of emmetropisation in early childhood, and then the gradual loss in lens power that occurs throughout adulthood. In parallel to these changes to lens refractive power, age-dependent increases in lens stiffness and light scattering result in presbyopia and cataract, respectively. In recent years it has been confirmed that the lens operates an internal microcirculation system that generates circulating fluxes of ions, water and nutrients that maintain the refractive properties and transparency of the lens. By actively regulating lens water content, the microcirculation system controls two key parameters, lens geometry and the gradient of refractive index, which together determine the refractive properties of the lens. Furthermore, by delivering nutrients and antioxidants to the lens nucleus, the microcirculation system maintains lens transparency by preventing crystallin aggregation. Interestingly, the solubility, intramolecular packing and refractive index increment of crystallin proteins can be modulated by the ability of crystallin proteins to dynamically bind water, a processed called syneresis. In a series of previous studies it has been shown that the application of external pressure to the lens can induce syneresis. Since it is now known that lens water transport generates a substantial internal hydrostatic pressure gradient, we speculate that the microcirculation is capable of regulating crystallin function by altering the amount of water bound to lens proteins in the nucleus, where the pressure gradient and protein concentrations are the highest. Here we present evidence for the links between lens transport, pressure, syneresis and protein function. Furthermore, because the lens pressure gradient can be regulated by intrinsic and extrinsic stimuli, we suggest mechanisms via which this integrative system can be used to effect the changes to the refractive and transparent properties of the lens that are observed across our lifetime.


Assuntos
Catarata , Cristalinas , Cristalino , Pré-Escolar , Humanos , Adulto , Cristalino/metabolismo , Catarata/metabolismo , Refração Ocular
4.
Mol Vis ; 29: 274-288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38222448

RESUMO

Purpose: The cystine/glutamate antiporter is involved in the export of intracellular glutamate in exchange for extracellular cystine. Glutamate is the main neurotransmitter in the retina and plays a key metabolic role as a major anaplerotic substrate in the tricarboxylic acid cycle to generate adenosine triphosphate (ATP). In addition, glutamate is also involved in the outer plexiform glutamate-glutamine cycle, which links photoreceptors and supporting Müller cells and assists in maintaining photoreceptor neurotransmitter supply. In this study, we investigated the role of xCT, the light chain subunit responsible for antiporter function, in glutamate pathways in the mouse retina using an xCT knockout mouse. As xCT is a glutamate exporter, we hypothesized that loss of xCT function may influence the presynaptic metabolism of photoreceptors and postsynaptic levels of glutamate. Methods: Retinas of C57BL/6J wild-type (WT) and xCT knockout (KO) mice of either sex were analyzed from 6 weeks to 12 months of age. Biochemical assays were used to determine the effect of loss of xCT on glycolysis and energy metabolism by measuring lactate dehydrogenase activity and ATP levels. Next, biochemical assays were used to measure whole-tissue glutamate and glutamine levels, while silver-intensified immunogold labeling was performed on 6-week and 9-month-old retinas to visualize and quantify the distribution of glutamate, glutamine, and related neurochemical substrates gamma-aminobutyric acid (GABA) and glycine in the different layers of the retina. Results: Biochemical analysis revealed that loss of xCT function did not alter the lactate dehydrogenase activity, ATP levels, or glutamate and glutamine contents in whole retinas in any age group. However, at 6 weeks of age, the xCT KO retinas revealed altered glutamate distribution compared with the age-matched WT retinas, with accumulation of glutamate in the photoreceptors and outer plexiform layer. In addition, at 6 weeks and 9 months of age, the xCT KO retinas also showed altered glutamine distribution compared with the WT retinas, with glutamine labeling significantly decreased in Müller cell bodies. No significant difference in GABA or glycine distribution were found between the WT and xCT KO retinas at 6 weeks or 9 months of age. Conclusion: Loss of xCT function results in glutamate metabolic disruption through the accumulation of glutamate in photoreceptors and a reduced uptake of glutamate by Müller cells, which in turn decreases glutamine production. These findings support the idea that xCT plays a role in the presynaptic metabolism of photoreceptors and postsynaptic levels of glutamate and derived neurotransmitters in the retina.


Assuntos
Ácido Glutâmico , Glutamina , Camundongos , Animais , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Cistina/metabolismo , Cistina/farmacologia , Camundongos Knockout , Antiporters/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Trifosfato de Adenosina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Glicina/metabolismo , Neurotransmissores , Lactato Desidrogenases/metabolismo
6.
Mol Vis ; 28: 245-256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284672

RESUMO

Purpose: Purinergic signaling pathways activated by extracellular ATP have been implicated in the regulation of lens volume and transparency. In this study, we investigated the location of ATP release from whole rat lenses and the mechanism by which osmotic challenge alters such ATP release. Methods: Three-week-old rat lenses were cultured for 1 h in isotonic artificial aqueous humor (AAH) with no extracellular Ca2+, hypotonic AAH, or hypertonic AAH. The hypotonic AAH-treated lenses were also cultured in the absence or presence of connexin hemichannels and the pannexin channel blockers carbenoxolone, probenecid, and flufenamic acid. The ATP concentration in the AAH was determined using a Luciferin/luciferase bioluminescence assay. To visualize sites of ATP release induced by hemichannel and/or pannexin opening, the lenses were cultured in different AAH solutions, as described above, and incubated in the presence of Lucifer yellow (MW = 456 Da) and Texas red-dextran (MW = 10 kDa) for 1 h. Then the lenses were fixed, cryosectioned, and imaged using confocal microscopy to visualize areas of dye uptake from the extracellular space. Results: The incubation of the rat lenses in the AAH that lacked Ca2+ induced a significant increase in the extracellular ATP concentration. This was associated with an increased uptake of Lucifer yellow but not of Texas red-dextran in a discrete region of the outer cortex of the lens. Hypotonic stress caused a similar increase in ATP release and an increase in the uptake of Lucifer yellow in the outer cortex, which was significantly reduced by probenecid but not by carbenoxolone or flufenamic acid. Conclusions: Our data suggest that in response to hypotonic stress, the intact rat lens is capable of releasing ATP. This seems to be mediated via the opening of pannexin channels in a specific zone of the outer cortex of the lens. Our results support the growing evidence that the lens actively regulates its volume and therefore, its optical properties, via puerinergic signaling pathways.


Assuntos
Carbenoxolona , Probenecid , Ratos , Animais , Probenecid/farmacologia , Carbenoxolona/farmacologia , Ácido Flufenâmico , Dextranos , Conexinas/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Antioxidants (Basel) ; 11(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36009235

RESUMO

Accumulating evidence in tissues suggests an interconnection between circadian clocks and redox regulation. Diurnal variations in antioxidant levels, circadian rhythms of antioxidant enzyme activity, and differences in oxidative stress markers at different times of the day all indicate that oxidative stress responses follow a circadian rhythm. Disruptions of circadian rhythms are linked to a number of age-related diseases, including those in the eye. Typically, ocular tissues contain a robust antioxidant defence system to maintain redox balance and minimise oxidative stress and damage. The lens, in particular, contains remarkably high levels of the antioxidant glutathione (GSH). However, with advancing age, GSH levels deplete, initiating a chain of biochemical events that ultimately result in protein aggregation, light scattering, and age-related cataracts. While there is evidence that the lens exhibits circadian rhythms in the synthesis and release of melatonin, little is known about the regulation or function of timekeeping mechanisms in the lens. Since circadian rhythms are disrupted with age, and the depletion of GSH in the lens is a known initiating factor in the development of age-related cataracts, understanding the mechanisms involved in regulating GSH levels may lead to the future development of approaches to manipulate the clock to restore GSH levels and redox balance in the lens, and protect the lens from cataracts.

8.
Exp Eye Res ; 213: 108845, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800480

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision impairment in working age adults. In addition to hyperglycemia, retinal inflammation is an important driving factor for DR development. Although DR is clinically described as diabetes-induced damage to the retinal blood vessels, several studies have reported that metabolic dysregulation occurs in the retina prior to the development of microvascular damage. The two most commonly affected metabolic pathways in diabetic conditions are glycolysis and the glutamate pathway. We investigated the role of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutamine synthetase (GS) in an in-vitro model of DR incorporating high glucose and pro-inflammatory cytokines. We found that GAPDH and GS enzyme activity were not significantly affected in hyperglycemic conditions or after exposure to cytokines alone, but were significantly decreased in the DR model. This confirmed that pro-inflammatory cytokines IL-1ß and TNFα enhance the hyperglycemic metabolic deficit. We further investigated metabolite and amino acid levels after specific pharmacological inhibition of GAPDH or GS in the absence/presence of pro-inflammatory cytokines. The results indicate that GAPDH inhibition increased glucose and addition of cytokines increased lactate and ATP levels and reduced glutamate levels. GS inhibition did not alter retinal metabolite levels but the addition of cytokines increased ATP levels and caused glutamate accumulation in Müller cells. We conclude that it is the action of pro-inflammatory cytokines concomitantly with the inhibition of the glycolytic or GS mediated glutamate recycling that contribute to metabolic dysregulation in DR. Therefore, in the absence of good glycemic control, therapeutic interventions aimed at regulating inflammation may prevent the onset of early metabolic imbalance in DR.


Assuntos
Retinopatia Diabética/enzimologia , Inibidores Enzimáticos/farmacologia , Glutamato-Amônia Ligase/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Interleucina-1beta/farmacologia , Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Retinopatia Diabética/patologia , Feminino , Glucose/farmacologia , Hiperglicemia/metabolismo , Ácido Iodoacético/farmacologia , L-Lactato Desidrogenase/metabolismo , Metionina Sulfoximina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Retina/enzimologia , Retina/patologia
9.
Exp Eye Res ; 212: 108790, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648773

RESUMO

Age related nuclear (ARN) cataracts in humans take years to form and so experimental models have been developed to mimic the process in animals as a means of better understanding the etiology of nuclear cataracts in humans. A major limitation with these animal models is that many of the biochemical and physiological changes are not typical of that seen in human ARN cataract. In this review, we highlight the work of Frank Giblin and colleagues who established an in vivo animal model that replicates many of the changes observed in human ARN cataract. This model involves exposing aged guinea pigs to hyperbaric oxygen (HBO), which by causing the depletion of the antioxidant glutathione (GSH) specifically in the lens nucleus, produces oxidative changes to nuclear proteins, nuclear light scattering and a myopic shift in lens power that mimics the change that often precedes cataract development in humans. However, this model involves multiple HBO treatments per week, with sometimes up to a total of 100 treatments, spanning up to eight months, which is both costly and time consuming. To address these issues, Giblin developed an in vitro model that used rabbit lenses exposed to HBO for several hours which was subsequently shown to replicate many of the changes observed in human ARN cataract. These experiments suggest that HBO treatment of in vitro animal lenses may serve as a more economical and efficient model to study the development of cataract. Inspired by these experiments, we investigated whether exposure of young bovine lenses to HBO for 15 h could also serve as a suitable acute model of ARN cataract. We found that while this model is able to exhibit some of the biochemical and physiological changes associated with ARN cataract, the decrease in lens power we observed was more characteristic of the hyperopic shift in refraction associated with ageing. Future work will investigate whether HBO treatment to age the bovine lens in combination with an oxidative stressor such as UV light will induce refractive changes more closely associated with human ARN cataract. This will be important as developing an animal model that replicates the changes to lens biochemistry, physiology and optics observed in human ARN cataracts is urgently required to facilitate the identification and testing of anti-cataract therapies that are effective in humans.


Assuntos
Envelhecimento , Catarata/metabolismo , Oxigenoterapia Hiperbárica/métodos , Cristalino/química , Óptica e Fotônica , Animais , Catarata/fisiopatologia , Bovinos , Humanos , Cristalino/diagnóstico por imagem , Cristalino/fisiologia , Microscopia com Lâmpada de Fenda
10.
Invest Ophthalmol Vis Sci ; 62(7): 23, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34156426

RESUMO

Purpose: The purpose of this study was to determine the importance of the xCT is a subunit. The cystine/glutamate antiporter is actually system xc-xCT subunit of the cystine/glutamate antiporter in maintaining redox balance by investigating the effects of the loss of xCT on lens transparency and cystine/cysteine balance in the aqueous humour. Methods: C57Bl/6 wild-type and xCT knockout mice at five age groups (6 weeks to 12 months) were used. Lens transparency was examined using a slit-lamp and morphological changes visualized by immunolabelling and confocal microscopy. Quantification of glutathione in lenses and cysteine and cystine levels in the aqueous was conducted by liquid chromatography tandem mass spectrometry (LC-MS/MS). Results: Slit-lamp examinations revealed that 3-month-old wild-type mice and xCT knockout mice lenses exhibited an anterior localized cataract. The frequency of this cataract significantly increased in the knockout mice compared to the wild-type mice. Morphological studies revealed a localized swelling of the lens fiber cells at the anterior pole. Glutathione levels in whole lenses were similar between wild-type and knockout mice. However, glutathione levels were significantly decreased at 3 months in the knockout mice in the lens epithelium compared to the wild-type mice. Aqueous cysteine levels remained similar between wild-type and knockout mice at all age groups, whereas cystine levels were significantly increased in 3-, 9-, and 12-month-old knockout mice compared to wild-type mice. Conclusions: Loss of xCT resulted in the depletion of glutathione in the epithelium and an oxidative shift in the cysteine/cystine ratio of the aqueous. Together, these oxidative changes may contribute to the accelerated development of an anterior cataract in knockout mice, which appears to be a normal feature of aging in wild-type mice.


Assuntos
Envelhecimento/fisiologia , Humor Aquoso , Catarata , Cistina/metabolismo , Ácido Glutâmico/metabolismo , Cristalino , Animais , Antiporters/metabolismo , Humor Aquoso/diagnóstico por imagem , Humor Aquoso/fisiologia , Catarata/diagnóstico , Catarata/metabolismo , Catarata/fisiopatologia , Cristalino/diagnóstico por imagem , Cristalino/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal/métodos , Oxirredução , Estresse Oxidativo , Microscopia com Lâmpada de Fenda/métodos
11.
Aerosp Med Hum Perform ; 91(11): 876-885, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33334408

RESUMO

INTRODUCTION: Isolated and confined environments (ICEs), such as spaceflight, are challenging psychologically. We have been evaluating self-directed tools to sustain and improve psychological well-being in these settings. The Expedition Application for Peak Psychological Performance (Expedition-APPP) is an interactive media-based set of self-directed tools that address conflict resolution, stress management, and depression treatment. Virtual reality (VR) of nature scenes is a tool to improve attention and relieve stress by providing users with an immersive nature experience. We evaluated both Expedition-APPP and VR in an ICE.METHODS: The Expedition-APP was evaluated during three, and nature VR during two, deployments at the HI-SEAS habitat, where crews of six were isolated for 812 mo. Participants used both the Expedition-APPP and VR and shared their feedback and experiences after the deployments in semistructured interviews. These interviews were evaluated using qualitative analysis techniques to gather generalizable insights into implementing autonomous mental health programs for people living and working in ICEs.RESULTS: Expedition-APPP modules provided a shared culture, language, and tools for working through challenges. VR allowed for access to emotions and experiences that were unavailable in the habitat. Suggestions for improvement included making refresher training easily available and providing a wider range of content to address different individuals coping styles.DISCUSSION: Both the Expedition-APPP and VR were appreciated and used, although a wider range of content and experiences was desired by participants.Lyons KD, Slaughenhaupt RM, Mupparaju SH, Lim JS, Anderson AA, Stankovic AS, Cowan DR, Fellows AM, Binsted KA, Buckey JC. Autonomous psychological support for isolation and confinement. Aerosp Med Hum Perform. 2020; 91(11):876885.


Assuntos
Realidade Virtual , Atenção , Emoções , Humanos , Saúde Mental , Negociação
12.
Nutrients ; 12(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066702

RESUMO

Cataracts or clouding of the lens is the leading cause of blindness in the world. Age and diabetes are major risk factors, and with an increasing aging and diabetic population, the burden of cataracts will grow. Cataract surgery is an effective way to restore vision; however, alternatives to cataract surgery are required to reduce the looming cataract epidemic. Since it is well established that oxidative damage plays a major role in the etiology of cataracts, antioxidants have been promoted as therapies to delay and/or prevent cataracts. However, many antioxidant interventions including vitamin C have produced mixed results as anti-cataract therapies. Progress has been made towards our understanding of lens physiology and the mechanisms involved in the delivery and uptake of antioxidants to the lens which may guide future studies aimed at addressing some of the inconsistencies seen in previous animal and human studies. Of interest is the potential for vitamin C based supplements in delaying the onset of cataracts post vitrectomy which occurs in up to 80% of patients within two years. These targeted approaches are required to reduce the burden of cataract on hospitals and improve the quality of life of our aging and diabetic population.


Assuntos
Antioxidantes , Ácido Ascórbico/administração & dosagem , Catarata/etiologia , Catarata/prevenção & controle , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição/fisiologia , Envelhecimento , Animais , Ácido Ascórbico/farmacologia , Complicações do Diabetes/complicações , Humanos , Estresse Oxidativo , Fatores de Risco , Vitrectomia/efeitos adversos , Corpo Vítreo
13.
Transl Vis Sci Technol ; 9(8): 37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32855883

RESUMO

Purpose: To investigate whether human donor lenses are capable of exporting reduced glutathione. Methods: Human lenses of varying ages were cultured in artificial aqueous humor for 1 hour under hypoxic conditions to mimic the physiologic environment and reduced glutathione (GSH) and oxidized glutathione (GSSG) levels measured in the media and in the lens. Results: Human donor lenses released both GSH and GSSG into the media. Donor lenses cultured in the presence of acivicin, a γ-glutamyltranspeptidase inhibitor, exhibited a significant increase in GSSG levels (P < 0.05), indicating that GSSG undergoes degradation into its constituent amino acids. Screening of GSH/GSSG efflux transporters revealed Mrp1, Mrp4, and Mrp5 to be present at the transcript level, but only Mrp5 was expressed at the protein level. Blocking Mrp5 function with the Mrp inhibitor MK571 led to a significant decrease in GSSG efflux (P < 0.05), indicating that Mrp5 is likely to be involved in mediating GSSG efflux. Measurements of efflux from the anterior and posterior surface of the lens revealed that GSH and GSSG efflux occurs at both surfaces but predominantly at the anterior surface. Conclusions: Human lenses export GSH and GSSG into the surrounding ocular humors, which can be recycled by the lens to maintain intracellular GSH homeostasis or used by neighboring tissues to maintain GSH levels. Translational Relevance: Early removal of a clear lens, as occurs to treat myopia and presbyopia, would eliminate this GSH reservoir and reduce the supply of GSH to other tissues, which, over time, may have clinical implications for the progression of other ocular diseases associated with oxidative stress.


Assuntos
Glutationa , Cristalino , Transporte Biológico , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Cristalino/metabolismo , Estresse Oxidativo
14.
J Am Pharm Assoc (2003) ; 60(6): 963-968.e2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32800456

RESUMO

BACKGROUND: In 2013, California passed Senate Bill 493, which allowed pharmacists to furnish hormonal contraceptives without a physician's prescription. Despite this expanded scope of practice, only 11% of the pharmacies reported furnishing hormonal contraception over the following 6 years. OBJECTIVES: Our study objectives were to determine the extent of hormonal contraceptive furnishing and identify the factors that led to successful implementation in San Francisco community pharmacies. METHODS: Backspace we conducted a cross-sectional survey to identify community pharmacies furnishing hormonal contraception in San Francisco. Interviews were coded inductively to identify consistent themes. Semistructured interviews with pharmacists at the locations that furnished contraception identified the factors that had led to successful implementation in local community pharmacies, as well as assessing changes in practice during the coronavirus disease (COVID-19) pandemic. RESULTS: San Francisco had 113 operational community pharmacies in April 2020. Of these, 21 locations reported that they furnished hormonal contraception (19%), and we interviewed pharmacists at 12 of those locations. We identified 3 key factors that drove implementation at the pharmacy level: administrative support, advertising, and pharmacist engagement. Additional drivers of implementation involved the nature of the community. The respondents also reported on barriers that continued to slow adoption, including consultation fees, time constraints, and patient privacy. Changes in demand for services owing to COVID-19 risks were inconsistent. CONCLUSION: Our findings suggest strategies that community pharmacies can use to expand their scope of practice and improve quality and continuity of care for patients.


Assuntos
COVID-19/epidemiologia , Serviços Comunitários de Farmácia/organização & administração , Anticoncepcionais Orais Hormonais/provisão & distribuição , Prescrições de Medicamentos/estatística & dados numéricos , Farmacêuticos/normas , Papel Profissional , Serviços Comunitários de Farmácia/normas , Estudos Transversais , Feminino , Humanos , SARS-CoV-2 , São Francisco/epidemiologia
15.
Oxid Med Cell Longev ; 2020: 4594606, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655769

RESUMO

The cystine/glutamate antiporter (system x c -) is composed of a heavy chain subunit 4F2hc linked by a disulphide bond to a light chain xCT, which exchanges extracellular cystine, the disulphide form of the amino acid cysteine, for intracellular glutamate. In vitro research in the brain, kidney, and liver have shown this antiporter to play a role in minimising oxidative stress by providing a source of intracellular cysteine for the synthesis of the antioxidant glutathione. In vivo studies using the xCT knockout mouse revealed that the plasma cystine/cysteine redox couple was tilted to a more oxidative state demonstrating system xc - to also play a role in maintaining extracellular redox balance by driving a cystine/cysteine redox cycle. In addition, through import of cystine, system xc - also serves to export glutamate into the extracellular space which may influence neurotransmission and glutamate signalling in neural tissues. While changes to system xc - function has been linked to cancer and neurodegenerative disease, there is limited research on the roles of system xc - in the different tissues of the eye, and links between the antiporter, aging, and ocular disease. Hence, this review seeks to consolidate research on system xc - in the cornea, lens, retina, and ocular humours conducted across several species to shed light on the in vitro and in vivo roles of xCT in the eye and highlight the utility of the xCT knockout mouse as a tool to investigate the contribution of xCT to age-related ocular diseases.


Assuntos
Antiporters/fisiologia , Cistina/metabolismo , Olho/metabolismo , Ácido Glutâmico/metabolismo , Visão Ocular/fisiologia , Sistema y+ de Transporte de Aminoácidos/química , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Antiporters/química , Antiporters/genética , Antiporters/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Humanos , Oxirredução , Estresse Oxidativo
16.
Clin Exp Ophthalmol ; 48(8): 1031-1042, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32462803

RESUMO

Ocular tissues possess a robust antioxidant defence system to minimize oxidative stress and preserve tissue structure and function. Glutathione (GSH) is a powerful antioxidant and in the lens exists at unusually high concentrations. However, with advancing age, GSH levels deplete specifically in the lens centre initiating a chain of biochemical events that ultimately result in protein aggregation, light scattering and age-related nuclear cataract. However, antioxidant supplementation has been shown to be ineffective in preventing or delaying cataract indicating that a better understanding of the delivery, uptake and metabolism of GSH in the different regions of the lens is required. This information is essential for the development of scientifically informed approaches that target the delivery of GSH to the lens nucleus, the region of the lens most affected by age-related cataract.


Assuntos
Catarata , Cristalino , Antioxidantes , Catarata/prevenção & controle , Glutationa , Humanos , Cristalino/metabolismo , Estresse Oxidativo
17.
Mol Vis ; 26: 277-290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300272

RESUMO

Purpose: Diabetic retinopathy (DR) is one of the most frequent complications of diabetes affecting the retina and eventually causing vision impairment. Emerging evidence suggests that inflammation plays a vital role in DR progression. In this study, we evaluated the early biochemical and neurochemical changes in mouse retinal explants to understand the contribution of proinflammatory cytokines to disease progression. Methods: DR was modeled in vitro by incubating mouse retinal explants in a physiological buffer supplemented with high glucose and the proinflammatory cytokines TNF-α and IL-1ß. Key metabolites of retinal energy metabolism, including glucose, lactate, ATP, glutamate, glutamine, and enzymes supporting retinal ATP levels were assessed 40 min after the application of high glucose and proinflammatory cytokines. As retinal energy metabolism is tightly coupled to retinal neurochemistry, we also determined the short-term effect on the amino acid distribution of glutamate, gamma aminobutyric acid (GABA), glutamine, and glycine. Results: The results indicated that the combined application of high glucose and proinflammatory cytokines increased retinal glucose, lactate, and ATP levels, and decreased retinal glutamate, without affecting glutamine levels or the enzymes supporting ATP levels. Moreover, we observed a statistically significant increase in ATP and glutamate release. Correspondingly, statistically significant alterations in amino acid distribution were observed in retinal explants coexposed to high glucose and proinflammatory cytokines. Conclusions: These data suggest that short-term exposure to proinflammatory cytokines contributes to the early biochemical and neurochemical changes caused by hyperglycemia, by affecting retinal energy metabolism and amino acid distribution. These data are consistent with the idea that early intervention to prevent inflammation-triggered loss of metabolic homeostasis in patients with diabetes is necessary to prevent DR progression.


Assuntos
Retinopatia Diabética/metabolismo , Glucose/farmacologia , Hiperglicemia/metabolismo , Interleucina-1beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Citocinas/farmacologia , Retinopatia Diabética/enzimologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glicina/metabolismo , Hiperglicemia/enzimologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Retina/efeitos dos fármacos , Retina/enzimologia , Retina/metabolismo , Ácido gama-Aminobutírico/metabolismo
18.
Clin Exp Optom ; 103(3): 307-311, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31218744

RESUMO

BACKGROUND: Cystine/glutamate exchanger (xCT) knockout mice are reported to exhibit an oxidative shift in the plasma cystine/cysteine ratio reminiscent of that seen in human plasma of ageing individuals. This suggests that the xCT knockout mouse is a model of accelerated ageing. The aim of this study was to examine the progression of age-related pathologies in the ocular tissues of wild-type mice and compare this to the xCT knockout mice. METHODS: Wild-type and xCT knockout mice were examined longitudinally or as separate groups of animals at six weeks, three months, six months, nine months, and 12 months of age. All groups of mice were anaesthetised, intraocular pressure measured using the iCare TONOLAB rebound tonometer and eyes examined using the Micron IV system. RESULTS: While the aim of the study was to determine if xCT knockout mice developed age-related pathologies earlier than wild-type mice, it was inadvertently discovered in the longitudinal cohort of animals, that the eyes developed corneal lesions in both groups of animals by six months of age, which obscured examination of the lens and retina. These lesions were not characteristic of age-related pathologies, but rather due to an external stressor. Lesions in the xCT knockout mice developed at an earlier age compared to wild-type mice, suggesting that loss of xCT exacerbates damage to the cornea, most likely caused by the rebound tonometer. When the same ocular procedures were performed on separate cohorts of mice of specific ages, no corneal lesions were detected for both groups of mice. CONCLUSIONS: While it may seem advantageous to examine the same cohort of mice to monitor the development of age-related pathologies, the type of ophthalmic tests conducted needs to be carefully considered to avoid introducing pathologies that are inadvertently a result of the examination process itself.


Assuntos
Envelhecimento , Córnea/metabolismo , Opacidade da Córnea/metabolismo , Cistina/metabolismo , Estresse Oxidativo , Animais , Córnea/diagnóstico por imagem , Opacidade da Córnea/diagnóstico , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Knockout
19.
Histochem Cell Biol ; 152(4): 293-310, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31396687

RESUMO

The cystine-glutamate exchanger (system xc-) is responsible for the exchange of extracellular cystine for intracellular glutamate. In this study, we mapped the expression of xCT, the light chain subunit of system xc- in the different tissues of 3-6-week-old mouse (C57BL/6J) eye and have used an xCT knockout mouse to verify labelling specificity. Moreover, using the xCT knockout mouse, we investigated whether xCT was involved in maintaining extracellular redox balance in the eye. xCT transcript and protein were present in the cornea, lens and retina of wild-type mice, but not knockout mice. xCT was localised to the corneal epithelium, and the lens epithelium and cortical fibre cells but was absent in the iris. xCT localisation could not be determined in the ciliary body or retina, since xCT labelling was also detected in the knockout indicating a lack of specificity of the xCT antibody in tissues of a neural origin. Intracellular cysteine and cystine concentrations were similar in the wild-type and xCT knockout mouse for the cornea, lens, and retina. While extracellular cysteine levels were similar between the plasma, aqueous humour, and vitreous humour of the wild-type and xCT knockout mouse, extracellular cystine levels in the plasma and aqueous were significantly elevated in the xCT knockout mouse relative to the wild type. This suggests that loss of xCT results in an increased oxidative environment, particularly within the anterior chamber of the eye in which the aqueous humour resides. How this oxidative shift impacts ocular tissues that interface with the aqueous humour over time will be the focus of future work.


Assuntos
Sistema y+ de Transporte de Aminoácidos/análise , Sistema y+ de Transporte de Aminoácidos/metabolismo , Olho/química , Olho/metabolismo , Sistema y+ de Transporte de Aminoácidos/deficiência , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução
20.
Nutrients ; 11(5)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137834

RESUMO

Oxidative stress and the subsequent oxidative damage to lens proteins is a known causative factor in the initiation and progression of cataract formation, the leading cause of blindness in the world today. Due to the role of oxidative damage in the etiology of cataract, antioxidants have been prompted as therapeutic options to delay and/or prevent disease progression. However, many exogenous antioxidant interventions have to date produced mixed results as anti-cataract therapies. The aim of this review is to critically evaluate the efficacy of a sample of dietary and topical antioxidant interventions in the light of our current understanding of lens structure and function. Situated in the eye behind the blood-eye barrier, the lens receives it nutrients and antioxidants from the aqueous and vitreous humors. Furthermore, being a relatively large avascular tissue the lens cannot rely of passive diffusion alone to deliver nutrients and antioxidants to the distinctly different metabolic regions of the lens. We instead propose that the lens utilizes a unique internal microcirculation system to actively deliver antioxidants to these different regions, and that selecting antioxidants that can utilize this system is the key to developing novel nutritional therapies to delay the onset and progression of lens cataract.


Assuntos
Antioxidantes/administração & dosagem , Catarata/prevenção & controle , Dieta , Suplementos Nutricionais , Cristalino/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Catarata/epidemiologia , Catarata/metabolismo , Catarata/patologia , Humanos , Cristalino/metabolismo , Cristalino/patologia , Estado Nutricional , Valor Nutritivo , Fatores de Proteção , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...